
 

Int. J. of Applied Mechanics and Engineering, 2021, vol.26, No.3, pp.44-61 
DOI: 10.2478/ijame-2021-0034 
 

THE NON-UNICITY OF THE FILM THICKNESS IN THE 
HYDRODYNAMIC LUBRICATION: NOVEL APPROACH GENERATING 

EQUIVALENT MICRO-GROOVES AND ROUGHNESS 
 

M. EL GADARI*  
University Moulay Ismail, ENSAM, Meknes, MOROCCO 

E-mail: m.elgadari@ensam-umi.ac.ma 
 

M. HAJJAM 
Department D3, Prime Institute, UPR3346, University of Poitiers, FRANCE 

 
 

Since the 1960s, all studies have assumed that a film thickness “h” provides a unique pressure field “p” by 
resolving the Reynolds equation. However, it is relevant to investigate the film thickness unicity under a given 
hydrodynamic pressure within the inverse theory. This paper presents a new approach to deduce from an initial 
film thickness a widespread number of thicknesses providing the same hydrodynamic pressure under a specific 
condition of gradient pressure. For this purpose, three steps were presented: 1) computing the hydrodynamic 
pressure from an initial film thickness by resolving the Reynolds equation with Gümbel’s cavitation model, 2) 
using a new algorithm to generate a second film thickness, 3) comparing and validating the hydrodynamic pressure 
produced by both thicknesses with the modified Reynolds equation. Throughout three surface finishes: the macro-
shaped, micro-textured, and rough surfaces, it has been demonstrated that under a specific hydrodynamic pressure 
gradient, several film thicknesses could generate the same pressure field with a slight difference by considering 
cavitation. Besides, this paper confirms also that with different ratios of the averaged film thickness to the root 
mean square (RMS) similar hydrodynamic pressure could be generated, thereby the deficiency of this ratio to define 
the lubrication regime as commonly known from Patir and Cheng theory. 

 
Key words: Reynolds equation, inverse theory, macro-shape, micro-texture, cavitation, lifting force, friction 
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1. Introduction 
 
The differential equation that governs the generation of pressure in lubricating films is known as the 

Reynolds equation. In steady-state condition, this equation is given for one dimensional, isoviscous, and 
incompressible hydrodynamic lubrication problem by: 

 

   3d h dp dh
dx 6 U dx dx

 
=  μ 

 (1.1) 

 
where: x  is the axial direction, U  is the velocity of the lower surface, and µ  is the lubricant viscosity. 
To design the lubricated components (bearings, thrust, seals ...) Eq.(1.1) is solved by using two theories: 

− The first, so called direct approach, is performed to dimension the supporting and/or guiding devices  
[1-3]. For a given film thickness, ( )h x  the pressure distribution, ( )p x  within the fluid film is obtained 
by solving the Reynolds equation (1.1). 
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− The other is the inverse method that is widely used for elastomeric seals. Indeed, according to this theory, 
the static contact pressure ( )ps x  is assumed equal to the hydrodynamic pressure ( )p x  and the film 
thickness ( )h x  is computed by using the first and second derivatives of ( )p x  [4-6] under non-cavitation 
conditions. 

This method is based on the Reynolds equation and two computational procedures are possible (1.2) and (1.3): 
 

  * 3h dp h h
6 U dx

= −
μ

, (1.2) 

 

    2 3 2

2
dh h dp h d p1 0
dx 2 U dx 6 U dx

  − + = μ μ  
. (1.3) 

 
Usually, Eq.(1.2) is most frequently used in the inverse hydrodynamic lubrication [6] to determine 

( )h x  where *h  is the film thickness at the location of the maximum pressure. The other approach is rarely 

used and is given by Eq.(1.3) with first and second derivative pressures /dp dx  and /2 2d p dx .  
Additionally, when the surface roughness is excessive, two approaches are used to resolve the 

Reynolds equation:  
− Stochastic method, so-called Patir and Cheng flow factors method [7] by solving the transformed (or 

averaged) Reynolds equation for micro bearings having a realistic surface roughness. 
− Deterministic method by assuming the rough surface as an analytical function. In most cases, it is given 

by sinusoidal form [8]. 
The proposed method describes a new approach to find different geometries, micro-grooves and 

roughnesses of the lubricated contact that keep the same operational parameters: friction force F , flow rate 
Q  and lifting force W .  

 

   
L

0

W pdx=  , 

 

  (  )
 

L

0

U h dpF dx
h 2 dx

μ= − + , (1.4) 
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12 dx 2
−= +

μ
. 

 
To consider the cavitation effect, the most frequently used methods are: 

− Method 1: In 1921, Gümbel [11] proposed simply to neglect pressures less than atmospheric pressure. 
Thus, to compute the hydrodynamic pressure in a full film lubricated contact, the Reynolds equation (1.1) 
is resolved with the cavitation condition: 

 
  wherecav atmp p p p= ≤ . (1.5) 
 

− Method 2: The following modified Reynolds equation [12] is resolved: 
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  ( ) 3 d 1 Dd d D dhh 6 U
dx dx dx dx

 − φ φ  = μ +  
   

 (1.6) 

 
where φ  is the cavitation index equal to 0 in the cavitation zone when D 0≤  and equal to 1 in the active zone 
when D 0> . 

By considering the replenishment r , where ρ  and 0ρ  are the density of the cavitated zone and 
lubricant, respectively: 

 

  
0

r hρ=
ρ

. (1.7) 

 
We admit also: 

 

  
and , when ,

and , else. cav

p D r h 1

p p r D h

= = φ =

= = +
 (1.8) 

 
Before beginning the numerical analysis, the reader must keep in mind the processing steps: 

− First analysis: with an initial film thickness ( )1H x , the Reynolds equation (1.1) is resolved, and the 
hydrodynamic pressure ( )p x  with cavitation effect is searched according to Gümbel [11] condition. 

− Second analysis: based on the hydrodynamic pressure ( )p x  of the first analysis an original approach is 
proposed to compute all the different film thicknesses ( )2H x . 

− Third analysis: by replacing the two film thicknesses ( )1H x  and ( )2H x  in the modified Reynolds 
equation (1.6), the hydrodynamic pressure for each film thickness is computed to compare and discuss 
the accuracy of the approach. 

 
2. Numerical approach 
 
2.1. Computing the hydrodynamic pressure 

 
The proposed approach consists of two steps depending on each other: 

− Step 1: By using an appropriate numerical method (finite differences, finite volumes, and finite elements, 
...), the Reynolds equation (1.1) corresponding to the first analysis and modified Reynolds equation (1.6) 
for the third analysis is resolved. Thus, according to the computed pressure ( )p x , the lifting force W , 
the friction force F  and the flow rate Q  are deduced from Eqs (1.4). 

 

 
 

Fig.1. Schematic representation of the Finite Difference Approach. 
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In this initial step, the film thickness ( )h x  is assumed known and equal to the guessed initial thickness 

( )1H x . Equations (1.1) and (1.6) are discretized with the classical finite volumes method briefly described in Fig.1. 
Thus the discretized equations are given by: 

 
       p p O O E E cA p A p A p S 0+ + + =  (2.1) 
 
where for the Reynolds equation (1.1) with the Gümbel [11] condition for the cavitation effect: 
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and for the modified Reynolds equation (1.6): 
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Fig.2. Schematic representation of the textured pad [9]. 
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To validate the numerical model used in our hydrodynamic lubrication simulations, we refer to the 
work of Fowell et al. [9, 10] that studied the effects of textured surfaces. The analytical formulas proposed in 
this work allow simple but at the same time precise calculation of the pressure distribution across a textured 
surface. Cavitation zones are also located in the contact using a formulation based on mass conservation. 

The geometry proposed by Fowell [9] in Fig.2. consists of a slot located on the stationary surface of a 
parallel faced pad. Thereby, in the divergent-convergent zone with the operating conditions (Tab.1.), cavitation 
could occur. 
 
Table 1. Geometry and operating conditions of the textured pad [9]. 

 
Parameter Numerical value 
Pad length  B 20 mm=   
Inlet length  a 4 mm=   
Slot length  b 6 mm=   
Outlet length  c 10 mm=   
Minimum film thickness  0h 1 micron=   
Depth of pocket  dh 5 micron=   
Velocity  /U 1 m s=   
Dynamic viscosity . .m 0 01Pa s=   

Ambient pressure .  0p 0 1 MPa=   
Cavitation pressure  cavp 0 MPa=   

 
The boundary conditions are given by: at x 0= , ( ) 0p 0 p=  and at x B= , ( )  0p B p= . 

 

 
 

Fig.3. Comparison of the present model and results of [9]. 
 
Comparing simulations of the present model and the analytical results [9], Fig.3. confirms a good 

agreement between the pressure distributions. However, the figure shows that the difference is mainly caused 
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by the discontinuous domain of the film thickness ( )h x . Indeed, the large mesh size of the geometry impacts 
the derivative accuracy of the function ( )h x . 

 
2.2. Computing different film thickness distributions 

 
A single and unique film thickness investigation can now be initiated to generate the same 

hydrodynamic pressure given by the Reynolds equation solution. Let us assume at the beginning the existence 
of two roots for Eq.(1.2), 1H  and 2H . Thus Eq.(1.2) becomes: 

 

  * 3
1

1
H dp H h
6 U dx

= −
μ

, (2.3) 

 

  * 3
2

2
H dp H h
6 U dx

= −
μ

 (2.4) 

 
where: ( )1H x  is equal to the film thickness, ( )h x  is initially given.  

In this section, we aim to check if ( )2H x  is equal to ( )1H x  whatever x  between 0 and L . By 
subtracting Eqs (2.4) from (2.3), we find: 

 

  ( ) ( ) 3 3
2 1 2 1

dpH H 6 U H H 0
dx

− − μ − = . (2.5) 

 
Thus the equivalent equation with 2H  as an unknown thickness is given by: 

 

  ( )  where  2 2
2 1 2 1 1 2

dpH H H H 6 U 0 H H
dx

+ + − μ = ≠ . (2.6) 

 
To find the roots of Eq.(2.6), the algorithm below is used for each x  between 0 and L : 

 

  ( ) ( ) ( )if :  then 1 2
2 12

1

H xdp 8 U 6 U 30 H x H xdpdx 2 4H
dx

−μ μ< < = + −  (2.7) 

 
else: 

 
  ( ) ( )2 1H x H x= . (2.8) 
 
Equation (2.7) leads to the following condition regarding the unicity of the film thickness: 
 

  or  for each  between and  2
1

dp 8 U dp 0 x 0 L
dx dxH

μ≥ ≤ . (2.9) 
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It is important to note that when the condition (2.9) is not verified, all the roots film thickness 2H  
could be combined to the initial film thickness 1H , and generate a new film thickness ( )h x  with the equation: 
 
  ( ) ( ) ( ) ( )( ) ( ) 1 2h x x H x 1 x H x= α + − α  (2.10) 
 
where: α  is an entire coefficient of geometry depending on the coordinate x  and is equal to 1 or 0, and ( )1H x  
is the initial film thickness and ( )2H x  are the roots film thickness. 

The parameter ( )xα  defines a new surface generating the same hydrodynamic pressure. Later in this 
paper, an investigation is performed to demonstrate how far the pressure is similar by considering the cavitation 
effect. 
 
3. Applications 
 
3.1. Different bearing geometry: without cavitation effect 

 
To explain this new theory in detail, an example of a commonly known bearing “sloping surface” is 

studied as described in Fig.4. 
 

 
 

Fig.4. The bearing geometry “sloping surface”. 
 

Figure 4 shows the flow between two non-parallel flat plates of infinite width along ( )Oz  and height 
difference at the ends ah  and bh  with a length L . The lower plate is driven by a uniform translation movement 
of speed U , the upper plate is stationary and inclined in the ( )xOy  plane by a very small constant angle. 

By assuming the following data: L 20mm= , .bh 0 008mm= , .ah 0 002mm= , .  0 01 Pa sμ = ⋅ , 
/U 200mm s=  the initial film thickness, in this case, is given by the following equation: 

 

  ( ) ( ) ( ) b a
1 a

h h
H x h L x

L
−

= + −  (3.1) 

 
With those operational conditions, the current bearing geometry generates the hydrodynamic pressure 

shown in Fig.5. A comparison between the finite difference method used in the previous section and the 
analytical result was performed and the numerical algorithm was easily validated. 
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Fig.5. Hydrodynamic pressure for an inclined surface bearing. 
 

Figure 6 proposes different configurations: 1H  and 2H  to design an appropriate geometry for the load 
support, keeping the same hydrodynamic lifting force and the same flow rate. Indeed, for illustrative purposes, 
all the shapes shown in Fig.7. could generate the same performance by only combining the initial and second 
film thickness within the parameter ( )xα  in Eq.(2.10). 

 
 

Fig.6. The film thicknesses roots: a) the initial film thickness ( )1H x , b) the second film thickness computed from 
Eqs (2.7) and (2.8). 
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It is relevant to confirm that with all the three bearing surface shapes #1, #2, and #3, the same 
hydrodynamic pressure is generated as shown in Fig.8., and the same flow rate as demonstrated in Fig.9. 
 

Fig.7. Examples of different bearing shape, a) shape #1, b) shape #2, c) shape #3. 
 
It is also important to note that the frictional force difference between the three bearing surfaces is 

slightly regular. Thus with shape #1, the friction force per length is about . /12 98N m , shape #2 is . /13 16 N m , 
and . /13 17 N m  for shape #3. 

Thus the designers need to perform several iterations by changing geometry to maintain the same 
lifting force and flow rate and minimizing the viscous friction effect. 
 

 
Fig.8. Hydrodynamic pressure with different 

bearing geometry. 
Fig.9. Flow rate conservation with different 

bearing geometry. 
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3.2. Micro-textured surfaces 
 
After confirming the existence of different film thicknesses generating similar hydrodynamic pressure 

in the case of the bearing with macro shaped geometry, this section presents a second application in the 
lubricated contact by considering micro-textured surfaces. 
 
Table 2. Geometry and operating conditions of the microtextured surface. 
 

Parameter  Numerical value 

Upper surface length  L 100 mm=  (Non-cavitated case) 
L 76mm=  (Cavitated case) 

Inlet length of cell texture  a 4 mm=   
The first length of cell texture  b 6 mm=   
The second length of cell texture  c 10 mm=   
Outlet length of cell texture d 24mm=  (Non-cavitated case)  

d 0mm=  (Cavitated case) 
Texture depth   dh 5 micron=   
Separating space film thickness  0h 5 micron=   
Texture density N 4=   
Velocity  /U 1 m s=   
Dynamic viscosity . .m 0 01Pa s=   
Ambient pressure .  0p 0 1 MPa=   
Cavitation pressure  cavp 0 MPa=   
Node number  N 1000 Nodes=   
 
This part aims to find all micro-textured surfaces providing the same lifting force by considering the 

phenomena resulting from the convergent-divergent domain, especially the cavitation effect. 
 

 
 

Fig.10. The micro-textured bearing geometry. 
 
Figure 10 illustrates the considered micro-textured surface with the operational parameters presented in Tab.2. 

 
3.2.1. First case: =L 100mm , =d 24mm  (without cavitation effect) 

 
A micro-textured surface is considered with an initial film thickness ( )1H x  given in Fig.10. This 

study is performed throughout three steps: 1) computing the hydrodynamic pressure ( )p x  with the guessed 
initial film thickness ( )1H x  and resolving the Reynolds equation (1.1), 2) using the Eqs (2.7) and (2.8) to find 
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the roots film thickness ( )2H x , 3) comparing hydrodynamic pressures ( )p x  corresponding to the film 
thickness ( )1H x  and ( )2H x  with the modified Reynolds equation. 
 
Step 1: The hydrodynamic pressure corresponding to the initial film thickness ( )1H x : 

According to the discretized equation (1.6), the Reynolds equation is resolved. Figure 11 shows the 
hydrodynamic pressure ( )p x  corresponding to the initial film thickness ( )1H x . 

 

 
Fig.11. Hydrodynamic pressure according to the initial film thickness ( )1H x . 

 
Step 2: The second film thickness roots ( )2H x : 

By using Eqs (2.8) and (2.9), the second film thickness ( )2H x  is computed. Figure 12 shows the big 
difference between the first film thickness ( )1H x  and ( )2H x . It is important to underline that both film 
thicknesses generate the same hydrodynamic pressure ( )p x . 
 

 
 
Fig.12. The film thicknesses roots without the cavitation effect: a) the initial film thickness ( )1H x , b) the second 

film thickness computed from Eqs (2.7) and (2.8).
 

Step 3: Comparing the hydrodynamic pressure for each film thickness 
According to numerical results of step 2, Fig.13. confirms the similar hydrodynamic pressure provided 

by different film thicknesses ( )1H x  and ( )2H x . 
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Fig.13. Hydrodynamic pressure for different micro-textured surfaces without cavitation. 
 

3.2.2. Second case: ,=L 76mm  =d 0mm  (with cavitation effect) 
 

To investigate the cavitation effect on the second film thickness ( )2H x , this section aims to study 
microtextured surface generating cavitated zone with L 76mm=  and d 0mm=  as shown in Fig.10. This 
analysis is performed throughout three steps: 1) resolving the Reynolds equation (1.1) to find the 
hydrodynamic pressure ( )p x  with the initial film thickness ( )1H x , 2) using Eqs (2.7) and (2.8) to compute 
the second film thickness ( )2H x , 3) comparing hydrodynamic pressures ( )p x  corresponding to the film 
thickness ( )1H x  and ( )2H x . 
Step 1: The hydrodynamic pressure corresponding to the initial film thickness ( )1H x , with the Gümbel [11] 
cavitation condition. 

The Reynolds equation is resolved by considering the Gümbel conditions [11] given in Eq.(1.5). Figure 
11 shows the hydrodynamic pressure ( )p x  corresponding to the initial film thickness ( )1H x , where the 
existence of the cavitated zones is highlighted.  

 
Fig.14. Hydrodynamic pressure with the initial film thickness ( )1H x . 

 
Step 2: The film thickness roots ( )2H x : 

The second film thickness ( )2H x  is computed from Eqs (2.8) and (2.9) by using the hydrodynamic 
pressure corresponding to the initial film thickness ( )1H x . Figure 15 demonstrates the impact of the cavitation 
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on the second film thickness ( )2H x . Indeed, the initial film thickness ( )1H x  is nearly equal to the second 

( )2H x  except in the vicinity of the border between the cavitated and non-cavitated zone. 
 

 
 

Fig.15. The film thicknesses roots with cavitation effect: a) the initial film thickness ( )1H x , b) the second film 

thickness computed from equations (2.7) and (2.8). 

 
Step 3: Comparing the hydrodynamic pressure for each film thickness (with the modified Reynolds equation) 

To compare the hydrodynamic pressure generated with the film thicknesses: the initial ( )1H x  and the 
second ( )2H x , the modified Reynolds equation was resolved of both thicknesses by considering the mass 
conservation instead of the Gümbel model [11] according to Eq.(1.5). 

 

 
Fig.16. Comparison of the hydrodynamic pressure provided by the initial film thickness ( )1H x  and the second 

film thickness ( )2H x . 
 
Figure 16 confirms a slight difference in the hydrodynamic pressure corresponding to the film 

thicknesses ( )1H x  and ( )2H x , despite the big difference with the hydrodynamic pressure given by the initial 
film thickness ( )1H x  computed according to the Gümbel model [11]. Therefore, it is also relevant to underline 
that the same initial film thickness ( )1H x  gives two different hydrodynamic pressures with mass conservation 
according to the modified Reynolds equation (1.6) and with the Gümbel cavitation model (1.5).  
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3.2.3. Effect of separating space film thickness: 0h . 
 

It is well known that the gap that separates lubricated surfaces affects significantly the hydrodynamic 
pressure. Thus, this section aims to prove the effectiveness of such an operational parameter on the second 
film thickness by considering the cavitation effect.  

To perform this investigation, a similar micro-textured surface is considered with L 76mm=  and 
d 0mm=  as described in Fig.10 and three different separating gaps are designed as follows: Case #1 with 

0h 5microns= , Case #2 with 0h 1micron=  and Case #3 with 0h 10microns= .  
 

 
 

Fig.17. Comparison of three separating gaps: a) initial film thickness ( )1H x , b) hydrodynamic pressure 
corresponding to ( )1H x  according to the Gümbel model, c) second film thickness ( )2H x , d) 
difference between hydrodynamic pressure computed from ( )1H x  and ( )2H x  according to the 
modified Reynolds equation. 

 
Figure 17 shows the impact of the gap between lubricated surfaces. As long as surfaces are close and 

the hydrodynamic pressure is high, the deviation between the hydrodynamic pressure produced by the second 
thickness is large compared to that generated by the initial thickness. Although the differences in pressure do 
not exceed 2%, the deviation maximum is located at the the border of cavitation zone and to the non-cavitated 
zone. Consequently, the proposed method for generating a second film thickness is applicable for any spacing 
gap between lubricated surfaces. 

 
3.3. Rough surfaces 

 
In general, the roughness surface is the relevant parameter that significantly affects the lubricated 

contact. Previous works have demonstrated that the arithmetic roughness Ra , the standard deviation σ , the 
kurtosis and skewness parameters Ku , and Sk , respectively, define the topography surface capacity to 
characterize tribological behavior of surfaces. 
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One of the pillar methods to find the hydrodynamic pressure for each rough surface is based on the 
stochastical approach with Patir and Cheng flow factors [7]. This stochastic method defines pressure as a 
function of the averaged film thicknesses ratio to the standard deviation roughness /0h σ . 

The main subject of this section is to prove that different surface topography parameters: Ra , Ku , 
and Sk  could generate the same hydrodynamic pressure. It is also very relevant to demonstrate that with 
different standard deviation σ  the hydrodynamic pressure could be maintained, thus the adimensional film 
thickness /0h σ  is not sufficient to define the hydrodynamic or elasto-hydrodynamic regime. 

Table 3 gives the initial film thickness (respectively, the initial surface roughness), and the second film 
thickness is given by Eqs (2.7) and (2.8), with operational parameters as described in Tab.1. with a lubricated 
length L 76mm=  and separating gap  0h 1 micron= . 

The standard deviation ( so-called Root Mean Square RMS) σ , the arithmetic roughness Ra , kurtosis 
Ku , and skewness Sk  are computed for each film thickness H  as follows: 
 
  ( ) ( ) 0R x H x h= − , 
 

  ( ) Assumption of randomized signal
N

i
i 1

1R R 0
N =

= = , 

 

  ( )   
N 2

i
i 1

1 R R
N =

σ = − , (3.2) 

 

  ( )  
N 3

i3
i 1

1Sk R R
N =

= −
σ  , 

 

  ( )  
N 4

i4
i 1

1Ku R R
N =

= −
σ   

 
where: R  is the roughness function represented in the realistic case with a randomized signal, and N  is the 
total node number. 
 
Table 3. Initial and second roughnesses corresponding to film thickness ( )1H x  and ( )2H x , respectively. 

 
Surface code Surface topography parameters 

Arithmetic 
roughness: Ra   

Standard 
deviation: σ   

Kurtosis: 
Ku  

Skewness: 
Sk   

Initial film thickness: Rough#1 , 31 00x10 mm−  , 6338 08x10 mm−  ,132 84   ,34 82   
Second film thickness: Rough#2 , 31 26 x10 mm−   , 31 53x10 mm−   ,96 53   ,10 22

 
Figure 18 shows numerical simulation by considering randomized surface as an initial surface 

roughness with a separating gap 0h 1micron= , with the operational parameters in Tab.2. The second film 
thickness ( )2H x  is deduced from Eqs (2.7) and (2.8) as given in Fig.18a. Before computing the film thickness 
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( )2H x , a post-processing step is important: computing the hydrodynamic pressure generated by the initial 
film thickness ( )1H x  throughout resolving equation (1.1) and using the Gümbel cavitation model [11]. 

To compare the accuracy of simulations, the hydrodynamic pressure produced by both film thicknesses 
( )1H x  and ( )2H x  is computed by the modified Reynolds equation (1.6).  

 

 

 
 

Fig.18. Comparison of hydrodynamic pressure values for different film thicknesses: a) initial film thickness 
( )1H x , b) hydrodynamic pressure computed from ( )1H x  and ( )2H x  by the modified Reynolds 

equation. 
 

Figure 18b confirms that the pressure has slight differences in spite of the significant differences 
between surface topography, especially the Root Mean Square (RMS) σ . Thereby, it is important to note that 
the ratio /0h σ  is not sufficient to determine the lubrication regime, thereby the deficiency of this ratio to 
define the lubrication regime as commonly known from the Patir and Cheng theory. 

 
4. Conclusions 
 

In this paper, the existence of several film thicknesses that provide the same hydrodynamic pressure 
by considering the cavitation effect was investigated throughout three depending steps: 

Step 1: With the operational conditions and an initial film thickness ( )1H x , the hydrodynamic 
pressure is computed from the Reynolds equation and using the Gümbel cavitation condition.  

Step 2: By using the hydrodynamic pressure of step 1 and under a specific pressure gradient condition, 
a second film thicknesses ( )2H x  is found with the presented new algorithm. 
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Step 3: Comparing the hydrodynamic pressure accuracy of both thicknesses ( )1H x  and ( )2H x  
computed from the mass conservation equation with the modified Reynolds equation. 

This new approach was applied for different lubricated surfaces: 
− Macro-shaped surfaces: by considering initial bearing surfaces, several surfaces have been proposed that 

give the same hydrodynamic pressure. It was also demonstrated that with different bearing macro-shapes 
the frictional force varies slightly and the flow rate is regular. 

− Micro-textured surfaces without cavitation: this case concerns a specific geometry condition of the 
surfaces that avoid the cavitation effect. By using the presented method, the initial and the second film 
thicknesses generate the same hydrodynamic pressure computed from the modified Reynolds equation. 

− Micro-textured surfaces with the cavitation effect: a specific geometry condition was considered to 
produce cavitation zones within the lubricated contact. 0.1% is a difference gap between the pressure 
obtained by resolving the modified Reynolds equation with both film thicknesses.  

− Rough surface: a randomized surface was considered and a second film thickness ( )2H x  corresponding 
to a new roughness generating the same hydrodynamic pressure was computed. It was confirmed also that 
the pressure has a slight difference in spite of the significant differences between the Root Mean Square 
(RMS) σ .  

The effect of the separating gap between the lubricated surfaces was also investigated and the second 
film thickness was found. The impact of this separation is about 2% by comparing the hydrodynamic pressure 
for both thicknesses computed from the modified Reynolds equation.  

This paper underlines that the ratio /0h σ  is not sufficient to determine the lubrication regime as 
commonly known from the Patir and Cheng theory. 

It must be recalled that this method is validated without considering the dry contact phenomenon. This 
work opens new tracks to be investigated to enable design of lubricated contact with any pressure distribution 
coupled with the surface flexibility. 
 
Nomenclature 
 
 F  – friction force per unit length (N/m) 
 ( )( )1H h x=  – initial film thickness (mm) 
 2H  – second film thickness (mm) 
 h  – film thickness (mm)  
 1h  – film thickness at x 0=  (mm) 
 Ku  – kurtosis topography parameter 
 p  – hydrodynamic pressure (MPa) 
 Q  – flow rate per unit length (mm2/s) 
 R  – surface roughness (mm) 
 r  – replenishment in the cavitated zone (mm) 
 Ra  – arithmetic roughness (mm) 
 Sk  – skewness topography parameter 
 U  – velocity (mm/s) 
 W  – balanced load per unit length (N/mm) 
 x  – axial coordinate (mm) 
 xΔ  – spatial step between two successive nodes (mm)  
 α  – entire film thickness coefficient equal to 1 or 0 ( ( )h x  is equal to 1H  or 2H ) 
 σ  – Root Mean Square (RMS) or standard deviation (mm) 
 Φ  – entire cavitation coefficient (equal to 1 or 0) 
 µ  – lubricant viscosity (MPas) 
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